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Spontaneous symmetry breaking of a $ 4 quantum of field theory in a time- 
dependent space-time, de Sitter space, is discussed in the Schr&linger picture. 
Instead of the usual cutoff method we use an e-regularization procedure to deal 
with the divergent integrals. 

1. INTRODUCTION 

We discuss the spontaneous symmetry breaking (SSB) of A,q~ a in 3 + I 
dimensions, in a time-dependent space-time and in the Schr6dinger picture 
(Jackiw and Kerman, 1979; Cooper et al., 1986; Castorina and Consoli, 
1983; Cornwall et aL, 1974). Our method is nonperturbative and some of 
the nonlinear features of the full quantum theory are retained. Recently this 
method has been successfully applied to ~p4 theory in both flat (Pi and 
Samiullah, 1987; Cooper and Mottola, 1987)and curved spaces (Roy, 1991; 
Kim et aL, 1988) and also to the Liouville model (Roy and Roy, 1991). 

In a recent paper Branchina et al. (1990) discussed the nontriviality of 
spontaneously broken ~tp 4 theory. They argued that A, tp 4 theories undergoing 
spontaneous symmetry breaking are asymptotically free. It is also found that 
if the cutoff is sent to infinity with respect to the renormalized mass, the 
theory develops another scale which corresponds to spontaneous symmetry 
breaking (Consoli and Ciancitto, 1985). Their renormalization gives the 
same result as that of the so-called "autonomous theory" of Hajj and Steven- 
son (1988). Here we follow the renormalization procedure of Branchina el 
al. to study SSB in what can be considered as half the de Sitter space. 

De Sitter space is the most widely studied curved space-time in quantum 
field theory, as it is the unique maximally symmetric curved space-time. It 
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enjoys the same degree of symmetry as Minkowski space (except dilation), 
which facilitates computations in quantum field theory (Birell and Davies, 
1982). 

In the present paper, our renormalization, the e-regularization tech- 
nique, is similar to dimensional regularization. This method is simpler than 
the usual cutoff method (Latorre et  al. ,  1986). For an elaborate treatment 
of renormalization in ~.tp 4 theory see Barnes and Ghandour 0980) and 
Bardeen and Moshe (1983). For ;t~p 4 theory in (1 + 1)-dimensional space see 
Wang (1991). 

2. FREE FIELD IN A TIME-DEPENDENT SPACE-TIME 

Four-dimensional de Sitter space is most easily represented as the hyper- 
boloid (Birell and Davies, 1982) 

2 2 2 2 Z o - Z  1 - Z 2 - Z 3 - Z  2= - - a  2 (1) 

embedded in five-dimensional Minkowski space with metric 

2 2 2 2 2 
ds2 = d Z o -  d Z  l - d Z  2 -  d Z  a - d Z  4 (2) 

The most useful coordinates are those which lead to the line element 

3 

d s 2 = d f l - e  2t/~ ~ (dx i )  2 (3) 
i = 1  

In terms of the conformal time 

t i = - a e  - t /~  , - o r <  r/<0 (4) 

the line element in (3) becomes 

( dx') ( s) 
q 

thus revealing that this portion of de Sitter space is conformal to half of the 
Minkowski space. Allowing I / to range over all real numbers -oo  < 7/< oo 
covers the other half. 

The Ricci scalar for the de Sitter space is calculated to be 

12 
R =  -a-- ~ (6) 

which is a constant. 
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The mode decomposition for the free scalar Klein-Gordon field q~ is 

= f a3 , [akUk(X) + a~u'~(x)] (7) 

where ~ x )  satisfies the Klein-Gordon equation 

[q2 02 27/ 0 ~A+m2+~R(rl)]q)(x)=O (8) 
L ~ 5 ~  2 a20. 

The modes Uk can be written in a separated form as 

uk(x) = (2Jr) -3/2 e ikx 17 Zk(rl) (9) 
tl 

It is easily seen that Zk(r/) is given by 

l I/2 2 e-i(v+ 1/2);,r Zk(rl)=~Qrrl) Hv(kT1) (lO) 

where H~)(krl) is the second Hankel function and 

v 2=9- a2m 2- 12~ (11) 

3. 2~p 4 THEORY IN THE SCHRODINGER PICTURE 

In the Schr6dinger-picture field theory (Pi and Samiullah, 1987; Kim 
et al., 1988) a quantum mechanical wave function V(x, t) is replaced by a 
wave functional ~F(q~, t) which is a functional of  a c-number field r at a 
fixed time t. We take our trial wave functional to be Gaussian, centered at 
~p and of  width G: 

~F((o,t):Nexp[-f~,y(o(x)B(x,Y)(~(Y)+~fx~(x)(o(x) 

where N is a normalization constant and 

~b(x) - ~o(x) - ~b(x, t) 

i B(x, y) =--~ G-l(x, y, t) - ~  Z(x, y, t) 

(13) 
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The expectation values are easily calculated to be 

(q~(x)) = O(x, t) 

( - i t i  ~ ) = h ( x , t )  6c~o(x) 
(q~(x)~o(y) ) = r t)~b(y, t) + liG(x, y, t) (14) 

(~ ;. ili ~ = h(x, t)~(x, t) + li s y, t)(~(y, x, t) 
. ,y 

In deriving (14), we have used functional integration, which is slightly modi- 
fied from the flat-space case as 

fD~(x)-.fDq,(x)g(x) '/4 (15) 

Also, we have used 

x -~d3x  qg 

3,(x, y) =~gg 3 ( x - y )  (16) 

6q,(x)_ 1 &o(x) 
- - -  8~(x, y )  

Solo(y) - x/g 6~o(y) 
where x, y denote three-dimensional space vectors and g is the determinant 
of the spatial metric tensor. 

The effective action in this picture is given by (Kim et al., 1988) 

f dt (~P(t)lihO,- 1-1]q~(t) ) (17) F 

The Hamiltonian for a scalar field in curved space is 

f [1 (i ~ ]2 + l (oifP)(aJq~)gO'+ V(~o)] (18) H =  

where ge is the spatial metric tensor and g~ is its inverse. [Note that if we 
keep the metric in the form (3), the metric tensor appears only in the spatial 
terms. This is important, as the calculations would be very involved other- 
wise. After evaluating the effective action F, we resort to the coordinate 
change given in (4).] 



Symmetry Breaking in a Time-Dependent Space-Time 323 

In the Gaussian approximation, the effective action reduces to 

F = dt [rcq~- ~(,r) - ~g (O,~o)(Ojq~) - V(tp)] 

,y , y , z  

+ �89 Vm(~)G(x, x))] 

- ~h2 f (19) 

r~, ~b, G, and Z are the variational parameters. ~ and Y~ play the role of 
conjugate momenta of ~b and G, respectively. 

Differentiating F with respect to G and Z, we get 

8F 
=0  

6G(x, y, t) 

I~(x, y, t) + 2 f .  g(x, z, t)Z(z, y, t) 

I - -2 ~G (x ,y ,  t ) - �89 ~ x y 

+ �89 h V(4)(gp)G(x, x)]ac(x, y) (20) 

and 

8F 
- 0  

8Z(x, y, t) 

G(x, y, t) 

[" [G(x, z, t)Y~(z, y, t) + Y~(x, z, t)G(z, y, t)] 2 (21) 

Using equations (3) and (4), we find that, in our case, gO can be written 
in terms of q as 

7 2 

o = _  (22) g a2 
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Now we introduce an effective mass term (Kim et al., 1988) 

fz 2_ v~2~(O ) + ~ v.~(~)~(x, x) (23) 

Using equations (22) and (23), we obtain from (20) and (21) and the defini- 
tion of r/, 

[ ~ O(x.y. .y. ,) 
2 a 2 [0r/2 q 

=�88 71)- + a  2 8~(x,y) (24) 

In analogy with the static flat space, we can consider a static case where 
G and (~1 are independent of 1/. Equation (24) then reduces to 

I - I  o k  2 
zG (x,y) = ~ 5 - + f ~  G(x,y) 6~(x,y) (25) 

The effective action then reduces to an effective potential given by 

F = - f d 4 x  Veff (26) J 

where 

re.= v( ~) + 2 v(2~( O)6(x, x) 

e 
+-- V"~((o)[G(x, x)12+ ~l(x, x) 

8 

+ 1 r/__22 [0,0(x) Oj~(y) + h oT~a(x, Y)]I~=, (27) 
2 a 2 

If we consider (b to be a constant, equation (27) reduces to 

Vofr= v(r d'(x, x)-  8 v"~(~)[a(x' x)]2 (28) 

In deriving (28) from (27), we have used equations (23) and (25). 
Confining ourselves to a de Sitter space-time with potential 

II(0) = �89 ( mz + ~ R) ~b z + 2 r  (29) 
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our effective potential takes the form 

�89 ~R)~2+ X~4+~ GI(x, x)-3;di2[G(x, x)] 2 G f r  = (30) 

Henceforth we shall put fi = 1. 

4. EVALUATION OF G AND (~1 

G and G t are the solutions of equation (25), 

zG (x,y) = +~2 G(x ,y)3 , (x ,y )  

Sandwiching equation (25) between the normalized eigenfunctions Uk(X) of 
the free field of de Sitter space, given in equation (9) above, we obtain 

~ l  1 f0 ~ ~ -  (x, x) 8~a 2 dp p2[H~)(p)[2 e '~ ~'" 

= G(x, x) - - 1  fo ~ v 8tea 4 dp p2(p2 + a2~,) 2)[H(v2)(p)]2 eTrIm (31) 

where p - kq. 
Since G(x, x)=  (~(x)~(y)) ,  the solutions of (31) are 

G(~"~ ) 8~rCt2 do p2IH~)(P)[2 e '~ I m  v (32) 

and 

where 

1;; 
�88 = 8~a4 dp p2(p2 +a2n2)lH~)(p)l 2 e T M  v (33) 

v 2 = 9_ a2f~ 2 (34) 

In deriving the above, we have redefined m 2 and f~ 2 as 

m 2 =m 2 + 6~/a 2 
(35) 

~2__=~2+ 12~/a 2 

This asymmetry in the definition of the mass terms is employed to cancel 
the curvature-dependent divergences in the final expression for the theory. 
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5. RENORMALIZATION OF THE EFFECTIVE POTENTIAL 

The effective potential in (30) takes the form 

V~rt = �88 G- '  (f~) + �89 2 -  I22)G(n ) + ~'m 2 ~o~2 

+ A@4 + 6AO2G(I.~ ) _ 3A[G(~ )]2 (36) 

which is in agreement with that of  Latorre et al. (1986) if we make the 
following identifications: 

~o(n ) - ~(n ) 
(37) z,(o)= �88 

The expression for V~rr contains many divergences which should be 
removed by renormalization of the mass and the coupling constant A, and 
by the subtraction of the zero-point energy. 

First of  all, we evaluate G and (~' from equations (32) and (33). Writing 

H~)(p )  = i cosec(vzt) [J-v(P) - eV'~iJ,,(P)] (38) 

we obtain with the help of e regularization, after some straightforward 
calculations (with e ~ 0), 

where 

and 

6(n )= 8 1-~a~ [So(D )+~ (a2n 2- 2)] 

�88 )= l---~[S,(~2 )+l 4 

(39) 

(40) 

S o ( ~ ) = � 8 9 1 8 8  + v ) - l n 4 ]  (41) 

= ~(~ - v2)a2f~[3 - 2~(2) + ~(~ - v) + ~/(:~ + v) - l n  4] 

1 I 2 9 2 + ~ ( z -  v ) ( z -  v ) [ - 2 5 +  12V(3) 

- 6~ , (~ -  v) - 6V/(~+ v) + 6 In 4] (42) 

S i  (~'~) = / a2~.~ 2S0(~. ~ ) + 9 _ a2~r-~ 2 _ l~a4~-~ 4 ( 4 3 )  
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Equations (39) and (40) are derived in the following way. In calculating G 
and G ~, we encounter integrals of the following type (Gradshteyn and 
Ryzhik, 1980) : 

o ~176 J v ( t ) J u ( t ) t  - ~  d t  

r ( z ) r ( (  ~ + ~ - ;t + 1 )/2) (44) 
2 ~ r ( ( -  v +/~ + Z +  1 ) / 2 ) r ( ( v  +/~ +~,+ 1)/2)r((v-u + z +  1)/2) 

In our case, A. is a negative integer. To make the integrals finite, we replace 
A. by 7~+ e with e--+0. Also, we make use of the following properties of 
gamma and digamma functions 

F(a + e) ~ F(a)[ 1 + e ~'(a)] + o(E 2) 
(45) 

F(a)F(1 - a) = 7r cosec(a~r) 

~'(1 - z )  = ~(z) + x cot(irz) 
(46) 

~(2z) = �89 ~'(z) + ~Vt(z+ ~)+ln 2 

Using the results (44)-(46) and (38) and the definitions of G(~ ) and (~ '(f~ ), 
we easily obtain the results (39)-(41). Apart from simplicity, this method has 
the added advantage that, as in dimensional regularization, the divergences 
appear as poles in e. Now, minimizing Veff with respect to f~ and 0 yields 

0V~ffl~ =0---~ ~2= m2 + 12,%~02 + I2A.G(~) (47) 
I 

0 Verr_ 0 ~ 00[m 2 + 4Z~ + 12A.G(fi)] = 0 (48) 

Thus, equation (48) has two solutions for ~ .  
(i) ~0 = 0 restores the symmetry. 

(ii) q302=-(1/4;t)[m2+ 12XG(~)] induces spontaneous symmetry 
breaking. 

We discuss here the spontaneously broken phase. 
From (47) and (48), we obtain 

~2 = 8&(~ (49) 

Since ~2> 0, Z must be positive. 
Substituting the expression for G(fl)  from (39) in equation (47), we 

get, using (49), 

-- 1 ~2 = ~'~2 "]- ~ [S0(fi) -- S0(~0) "~t" -~(fi2 -- ~ )  ] (50) 
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The renormalized mass is defined by 

2 02V~rt 
17l "= " - -~2  @= 0 

= m s + 12)~G(~0) 

=fig 

The renorrnalized coupling constant is defined by 

1 04 V~ff l 
2R-4! {~0 4 1~=0 

or  

where 

x{c(o ' ) , , -  G,]~ ,+, '  Gt~ - a,~,' ,,~',,,,-,,, ,,, - lZZ (~,)~} j 
~,R" I ~ j  , G' G ' '  r iG 1,.~ [z( ) -  ] - e [ ~ - a t t r l ) ' ] G " + 6 Z ( G ' )  3 ~=o 

(51) 

(52) 

(53) 

0f~ 2 - , = 0 - ~  rio~' etc. 

Substituting equations (39)-(43) in (53), we obtain in the E ~ 0 limit 

A,R = --2~ (54a) 

Thus, SR < 0 if A. is positive. This is analogous and in fact identical to the fiat- 
space result of  Consoli and Ciancitto (1985). Since ~ and A.R are connected by 
a finite relation, the divergences in equation (50) and hence in the expression 
for V~ef do not cancel. 

Solving the quadratic equation in ~ in equation (53), we obtain the 
second root as 

= ~trze + O(e 2) (54b) 

This value of  $ cancels the divergence in equation (50), but it fails to give a 
nonzero extremum of the potential. Therefore, we are compelled to abandon 
this renormalization for ,L 

Next we try an alternative method for renormalizing Z. 
Consider equation (50). Scaling ri0 ~ = 0, we obtain 

l ri2(1 + 3z) 3z 7r2--7} = 2jr2a----~ [So(ri0) - S0(ri)] (55) 
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To make this last expression finite, we must take the following definition 
for 2~: 

2 . . . .  a e  2 (56) 
3 

Substituting the value of 2 from equation (56) in equation (55), we obtain 
the following expression for a: 

/g2 
a = + 3a2h------- 5 [S0(•) - So(h)] (57) 

In the fiat-space limit, i.e., a2h2--+ 2, equation (57) yields 

if2 
a = + - -  (58) 

6 

Now, equation (56) can be written as 

1 Jr 2 ( 9aA.~ 
- 1 - ( 5 9 )  

3z -Z/ 
Therefore, in the absence of  curvature, equation (59) can be written as 
[substituting the value of a from (58)], 

l_ 32/ 
e 32 \ 2zr 2] (60) 

Comparing with the fiat-space result, we find L~ ~-3 /z r2e ,  which implies 
(i) e < 0  and (ii) 2 <  ~Tr 2. 

With this identification we get back the result of  Consoli and Ciancitto 
(1985) in the fiat-space limit [remember that their 2 differs from ours by a 
numerical factor (24 to be precise)]. 

Thus, meaningful physics can arise only if 2 is positive and infinitesimal 
(at least when the curvature term is not too large). The subtracted energy 
density then turns out to be 

g o . -  D = -I a ~(fi) - �88 + zeg 

- � 89  + 3 2 [ c ( h ) -  a (h0) ]  2 

+ 6Z~[G(h)  - G(~;~o)] 

f i  ~ So(fi) 
128~r 2 16rc2a 4 

fi~ 
+ 32~2a------- ~ [So(h) - 2So(ff~o) - 4] (61) 
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As can be seen from (61), our result reproduces the flat-space result of  
Consoli et al. (1985) in the absence of  the curvature term. Equation (61) 
shows that the absolute minimum in the Gaussian functional is obtained 
and hence spontaneous symmetry breaking occurs as in the flat-space case. 
However, the restriction on X now depends on the curvature and the upper 
limit differs considerably from .~r 2 when a is a finite. To be precise, ~ <  Ir49a, 
where a is given by equation (57). 

6. DISCUSSIONS AND CONCLUSIONS 

In this paper we discuss spontaneous symmetry breaking of  ~r field 
theory in a time-dependent space-time using the Schr6dinger picture. So far 
as we know, this is the first attempt to deal with time-dependent space-time 
in the Schr6dinger picture. It is seen that the approach yields the effective 
potential in an elegant way. Moreover, our normalization procedure is 
different from that used by previous authors for ~p4 theory in curved space. 
Using the normalization procedure of  Consoli et al., we have been able to 
show that/~p4 theory undergoes spontaneous symmetry breaking. In this 
normalization scheme f20 has been chosen to be zero. To have a meaningful 
theory, ,!, must have an upper limit which depends on the curvature term a. 
Our formulation yields all the results of  the fiat-space case when the proper 
limit is taken. An interesting extension of  this work would be in the realm 
of  finite temperature to see if there exists a critical temperature Tc above 
which symmetry is restored. Tc will obviously depend on the curvature. 
Work is in progress along this line. 
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